Один очень близкий мне человек, поклонник Хабра, захотел внести вклад в развитие блога Cisco. Являясь яростным поклонником того, что создает эта корпорация, он захотел поделиться опытом. =) Надеемся росчерк пера удался.
Относительно недавно мне посчастливилось познакомить и даже поконфигурять multicast routing для IPTV. Изначально, я с этой темой была совершенно не знакома, и это заставило меня вылакать горлышко от цистерны водки перекопать огромное количество документации, чтобы войти в курс дела.
И вот незадача. Обычно в документации выкладывают все и сразу и для человека, впервые столкнувшегося с этой темой, не понятно с чего начать. Во время чтения pdf’ок я ловила себя на мысли, что было бы неплохо наткнуться где-нибудь на статью, которая могла бы коротким путем провести от теории к практике, чтобы понять с чего стоит начать и где заострить внимание.
Мне не удалось обнаружить такую статью. Это побудило меня написать эту статейку для тех, кто также как и я столкнется с вопросом, что это за зверь IPTV и как с ним бороться.
Введение
Это моя самая первая статья (но не последняя! есть еще много зверей), постараюсь изложить все как можно доступнее.
Первым делом озвучим несколько понятий, чтоб исключить дальнейшие недопонимания. Существует три вида трафика:
- unicast — одноадресный, один источник потока один получатель
- broadcast — широковещательный, один источник, получатели все клиенты в сети
- multicast — многоадресный, один отправитель, получатели некоторая группа клиентов
Какой вид трафика использовать для IPTV?
— | unicast | broadcast | multicast |
Особенности применительно к IPTV | получаем дублирование трафика, для каждого абонента создается свой поток | клиентское оборудование вынуждено обрабатывать весь поток каналов, который может быть совсем не несколько килобит | абонент получает только тот поток, который запрашивает |
Очевидно, что для вещания каналов наибольшее предпочтение отдается multicast.
Любой TV-канал, который мы хотим вещать в сеть, характеризуется адресом группы, который выбирается из диапазона, зарезервированного для этих целей: 224.0.0.0 – 239.255.255.255.
Для работы IPTV необходим роутер, поддерживающий multicast (далее MR). Он будет отслеживать членство того или иного клиента в определенной группе, т.е. постоянно следить какому клиенту какой отправлять TV-канал.
Для того чтобы клиент смог зарегистрироваться в одной из этих групп и смотреть TV-канал используется протокол IGMP (Internet Group Management Protocol).
Немного о том, как работает IGMP.
Есть сервер, который включен в роутер MR. Этот сервер вещает несколько TV-мультиков, например:
224.12.0.1 | канал 1 | News |
224.12.0.2 | канал 2 | History |
224.12.0.3 | канал 3 | Animals |
Клиент включает канал News, тем самым, сам не подозревая, он отправляет запрос на MR для подключения к группе 224.12.0.1. С точки зрения протокола IGMP это запрос “JOIN 224.12.0.1”.
Если пользователь переключается на другой канал, то он сначала отправляет уведомление MR, что он отключает канал News или покидает эту группу. Для IGMP это “LEAVE 224.12.0.1”. А затем повторяет аналогичный запрос JOIN для нужного канала.
MR иногда спрашивает всех: “а какой группе кто подключен?”, чтобы отключать тех клиентов, с которыми оборвалась связь и они не успели отправить уведомление LEAVE. Для этого MR использует запрос QUERY.
Ответ абонента на этот запрос это MEMBERSHIP REPORT, который содержит список всех групп, в которых состоит клиент.
Настройка multicast routing.
Предположим, что клиенты одной группы смотрят один и тот же мультик, но находятся они в разных сегментах сети (network A и network B). Для того, чтобы они получили свой мультик и придуман multicast routing.
Пример настройки роутеров MR1 и MR2.
Network A | 10.1.0.0/24 |
Network B | 10.2.0.0/24 |
Network C | 10.3.0.0/24 |
MR1 | MR2 |
MR1#sh run
ip multicast-routing |
MR2#sh run
ip multicast-routing |
Команда “ip multicast-routing” включает соответствующий routing, если же он выключен, то роутер не пересылает multicast пакеты, т.е. они не дойдут до недоумевающего зрителя мультиков.
Остановимся чуть поподробнее на команде “ip pim sparse-mode“.
Про режимы протокола PIM и сам протокол.
PIM (Protocol Independent Multicast) — протокол маршрутизации multicast рассылки. Он заполняет свою таблицу multicast маршрутизации на основе обычной таблицы маршрутизации. Эти таблицы можно просмотреть с помощью команд “sh ip mroute” и “sh ip route” соответственно. Целью протокола PIM является построение дерева маршрутов для рассылки multicast сообщений.
У протокола PIM существует два основных режима: разряженный (sparse mode) и плотный (dense mode). Таблица multicast маршрутизации для них выглядит немного по-разному. Иногда эти режимы рассматривают как отдельные протоколы — PIM-SM и PIM-DM.
В нашей конфигурации на интерфейсах мы указали режим “ip pim sparse-mode“.
(config-if)# ip pim?
dense-mode Enable PIM dense-mode operation
sparse-dense-mode Enable PIM sparse-dense-mode operation
sparse-mode Enable PIM sparse-mode operation
………
В чем же разница?
PIM-DM использует механизм лавинной рассылки и отсечения (flood and prune). Другими словами. Роутер MR отправляет всем все multicast потоки, которые на нем зарегистрированы. Если клиенту не нужен какой-то из этих каналов, то он от него отказывается. Если все клиенты, висящие на роутере, отказались от канала, то роутер пересылает “спасибо, не надо” вышестоящему роутеру.
PIM-SM изначально не рассылает зарегистрированные на нем TV-каналы. Рассылка начнется только тогда, когда от клиента придет на нее запрос.
Т.е. в PIM-DM MR отправляет всем, а потом убирает ненужное, а в PIM-SM MR начинает вещание только по запросу.
Если члены группы разбросаны по множеству сегментов сети, что характерно для IPTV, PIM-DM будет использовать большую часть полосы пропускания. А это может привести к снижению производительности. В этом случае лучше использовать PIM-SM.
Между PIM-DM и PIM-SM существуют еще отличия.
PIM-DM строит дерево отдельно для каждого источника определенной multicast группы, т.е. multicast маршрут будет характеризоваться адресом источника и адресом группы. В multicast таблице маршрутизации будут записи вида (S,G), где S — source, G — group.
У PIM-SM есть некоторая особенность. Этому режиму необходима точка рандеву (RP — rendezvous point) на которой будут регистрироваться источники multicast потоков и создавать маршрут от источника S (себя) до группы G: (S,G).
Таким образом, трафик идет с источника до RP по маршруту (S,G), а далее до клиентов уже по общему для источников определенной группы дереву, которое характеризуется маршрутом (*,G) — “*” символизирует «любой источник». Т.е. источники зарегистрировались на RP, и далее клиенты уже получают поток с RP и для них не имеет значения, кто был первоначальным источником. Корнем этого общего дерева будет RP.
Точкой рандеву является один из multicast роутеров, но все остальные роутеры должны знать “кто здесь точка RP”, и иметь возможность до нее достучаться.
Пример статического определения RP (MR1). Объявим всем multicast роутерам, что точкой рандеву является 10.0.0.1 (MR1):
ip pim rp-address 10.0.0.1 IPTV override | указываем адрес RP и access-list IPTV access-list определяет какие группы |
ip access-list standard IPTV | регистрироваться на данной точке рандеву |
permit 224.11.0.0 0.0.0.3 |
Все остальные роутеры должны знать маршрут до RP:
ip route 10.0.0.0 255.255.255.0 10.10.10.1
Существуют так же и другие способы определения RP, это auto-RP и bootstarp router, но это уже тема для отдельной статьи (если кому-нибудь будет интересно – пожалуйста)?
Посмотрим, что будет происходить после настройки роутеров.
Мы по-прежнему рассматриваем схему с роутерами MR1 (RP) и MR2. Как только включаем линк между роутерами MR1 и MR2, то должны увидеть в логах сообщения
Для MR1:
%PIM-5-NBRCHG: neighbor 10.10.10.2 UP on interface Ethernet3
Для MR2:
%PIM-5-NBRCHG: neighbor 10.10.10.1 UP on interface Ethernet0
Это говорит о том, что роутеры установили отношение соседства по протоколу PIM друг с другом. Проверить это также можно с помощью команды:
MR1#sh ip pim neighbor
PIM Neighbor Table
Mode: B — Bidir Capable, DR — Designated Router, N — Default DR Priority, S — State Refresh Capable
Neighbor Address | Interface | Uptime/Expires | Ver | DR Prio/Mode |
10.10.10.2 | Ethernet3 | 00:03:05/00:01:37 | v2 | 1 / DR S |
Не забываем про TTL.
В качестве тестового сервера мне было удобно использовать плеер VLC. Однако, как позже обнаружилось, даже если выставить через GUI достаточный TTL, он все равно (надеюсь только в использованной мной версией) упорно отправлял multicast пакеты с TTL=1. Запускать упрямого пришлось с опцией «vlc.exe –ttl 3» т.к. у нас на пути будет два роутера, каждый из которых уменьшает TTL пакета на единицу.
Как же все таки обнаружить проблему с TTL? Один из способов. Пусть сервер вещает канал 224.12.0.3 с TTL=2, тогда на роутере MR1 пакеты проходят нормально, а за роутером MR2 клиенты уже не смогут смотреть свой мультик.
Обнаруживается это с помощью команды «sh ip traffic» на MR2. Смотрим на поле “bad hop count” – это число пакетов, которые “умерли”, как им и отмеряно, по TTL=0.
MR2#sh ip traffic
IP statistics:
Rcvd: 36788 total, 433 local destination
0 format errors, 0 checksum errors, 2363 bad hop count
……………………………………
Если этот счетчик быстро увеличивается, значит — проблема в TTL.
Show ip mroute
После включения вещания трех каналов на сервере в таблице multicast маршрутизации наблюдаем следующее:
MR1# sh ip mroute
(*, 224.12.0.1), 00:03:51/stopped, RP 10.0.0.1, flags: SP
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list: Null
(10.0.0.2, 224.12.0.1), 00:03:52/00:02:50, flags: PT
Incoming interface: Ethernet0, RPF nbr 0.0.0.0
Outgoing interface list: Null
(*, 224.12.0.2), 00:00:45/stopped, RP 10.0.0.1, flags: SP
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list: Null
(10.0.0.2, 224.12.0.2), 00:00:45/00:02:50, flags: PT
Incoming interface: Ethernet0, RPF nbr 0.0.0.0
Outgoing interface list: Null
(*, 224.12.0.3), 00:00:09/stopped, RP 10.0.0.1, flags: SP
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list: Null
(10.0.0.2, 224.12.0.3), 00:00:09/00:02:59, flags: PT
Incoming interface: Ethernet0, RPF nbr 0.0.0.0
Outgoing interface list: Null
Видим, что появились маршруты вида (S,G), например (10.0.0.2, 224.12.0.3), т.е. зарегистрировался источник 10.0.0.2, который вещает для группы 224.12.0.3. А так же маршруты с RP до клиента: (*,G), например (*, 224.12.0.3) – которые они будут использовать, так называемое общее для всех дерево.
Как только на интерфейс MR1 (RP) приходит запрос на получение канала 1, в multicast таблице маршрутизации происходят следующие изменения:
MR1#sh ip mroute
…………………
(*, 224.12.0.1), 00:33:16/00:02:54, RP 10.0.0.1, flags: S
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list:
Ethernet3, Forward/Sparse, 00:02:37/00:02:53
(10.0.0.2, 224.12.0.1), 00:33:17/00:03:25, flags: T
Incoming interface: Ethernet0, RPF nbr 0.0.0.0
Outgoing interface list:
Ethernet3, Forward/Sparse, 00:02:37/00:02:53
Стало видно, что приходят запросы на эту группу с порта Ethernet3.
RPF проверка
Возможна ситуация, когда роутер получает multicast поток на двух интерфейсах. Кого из этих двух интерфейсов роутер будет считать источником?
Для этого он выполняет проверку RPF (Reverse Path Forwarding) — проверяет по обычной unicast таблице маршрутизации маршрут до источника и выбирает тот интерфейс, через который идет маршрут до этого источника. Эта проверка необходима для того чтобы избежать образования петель.
Отследить, как источник проходит проверку RPF можно с помощью команды:
MR2#sh ip rpf ?
Hostname or A.B.C.D IP name or address of multicast source
MR2#sh ip rpf 10.0.0.2
RPF information for? (10.0.0.2)
RPF interface: Ethernet0
RPF neighbor:? (10.10.10.1)
RPF route/mask: 10.0.0.0/24
RPF type: unicast (static)
RPF recursion count: 0
Doing distance-preferred lookups across tables
Ну, вот и появилась та статейка, которую я бы с удовольствием нашла, на начальном этапе изучения multicast routing’а для IPTV. Я не волшебник, я только учусь… Потому, с радостью выслушаю все пожелания, замечания и советы. А так же, очень надеюсь, что для кого-то она окажется полезной. =)
UPD: Разрешите представить ее. Елена Сахно — lena_sakhno